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Abstract: Refined empirical algorithms for chlorophyll-a (Chl-a) concentration, using the maximum
ratio of normalized water-leaving radiance nL;,(A) at the blue and green bands, and Secchi depth (SD)
from nLy(A) at 551 nm, nL,,(551), are proposed for the Visible Infrared Imaging Radiometer Suite
(VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite in the Great Lakes.
We demonstrated that water quality properties and phytoplankton production can be successfully
monitored and assessed using the new regional Chl-a and SD algorithms, with reasonably accurate
estimates of Chl-a and SD from the VIIRS-SNPP ocean color data in the Great Lakes. VIIRS-derived
Chl-a and SD products using the proposed algorithms provide the temporal and spatial variabilities
in the Great Lakes. Overall, Chl-a concentrations are generally low in lakes Michigan and Huron,
while Chl-a data are highest in Lake Erie. The seasonal pattern shows that overall low Chl-a
concentrations appear in winter and high values in June to September in the lakes. The distribution
of SD in the Great Lakes is spatially and temporally different from that of Chl-a. The SD data are
generally lower in summer and higher in winter in most of the Great Lakes. However, the highest
SD in Lake Erie appears in summer, and lower values in winter. Significantly high values in Chl-a,
and lower values in SD, in the nearshore regions, such as Thunder Bay, Saginaw Bay, and Whitefish
Bay, can be related to the very shallow bathymetry and freshwater inputs from the land. The time
series of VIIRS-derived Chl-a and SD data provide strong interannual variability in most of the
Great Lakes.

Keywords: Great Lakes; remote sensing; ocean color; chlorophyll-a; Secchi depth; water quality;
Visible Infrared Imaging Radiometer (VIIRS)

1. Introduction

There are increasing interests in satellite algorithms to estimate water quality and biogeochemical
parameters in the Great Lakes [1-9] for satellite ocean color sensors, e.g., the Coastal Zone Color
Scanner (CZCS) [10,11], the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) [12], the Moderate
Resolution Imaging Spectroradiometer (MODIS) [13] on the Terra and Aqua satellites, and the Visible
Infrared Imaging Radiometer Suite (VIIRS) [14] on the Suomi National Polar-orbiting Partnership
(SNPP) and National Oceanic and Atmospheric Administration (NOAA)-20. Ocean color satellite
observations provide important contributions in monitoring and investigating optical, biological,
biogeochemical and water quality properties in global inland freshwater systems.

The ocean chlorophyll-type (OCx) approach, using the maximum band ratio (MBR) of the
normalized water-leaving radiance spectra nL;,(A) (or the remote sensing reflectance spectra Rs(A))
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from the satellite ocean color sensor at blue to green wavelengths, is generally used to derive
chlorophyll-a (Chl-a) data in the global ocean waters, as the standard in NASA retrieval algorithms [15]
(e.g., OC2 and OC4 for SeaWiFS, OC3M for MODIS, and OC3V for VIIRS). However, several studies
have reported that the standard OCx algorithms have apparent uncertainties in Chl-a concentrations in
the Great Lakes [4,6,16-18]. These studies also proposed several regional Chl-a algorithms for the Great
Lakes, but most of these Chl-a algorithms are for the individual lakes. Lesht et al. [4] have developed
tuned OCx-based Chl-a algorithms for the entire Great Lakes, using the SeaWiFS and MODIS ocean
color data with in-situ Chl-a measurements, and shown improved results. Water quality properties
have also been investigated using satellite-derived Secchi depth (SD) data in the Great Lakes [2,19].
In fact, Binding et al. [2] developed an empirical SD algorithm for the entire Great Lakes for the
various satellite ocean color sensors (e.g., CZCS, SeaWiFS, and MODIS-Aqua). However, Chl-a and SD
algorithms were generated specifically for CZCS, SeaWiFS, and/or MODIS-Aqua ocean color data in
the Great Lakes. Although satellite ocean color sensors measure 1L, (A) spectra [or R,s(A) spectra] at
similar wavelengths, there are considerable differences in the satellite measurements, which can cause
differences in water quality and biological/biogeochemical products derived from different satellite
ocean color sensors, particularly due to sensor spectral response function differences [20]. Therefore,
it is desirable to improve the retrieval algorithms of biological and biogeochemical properties for other
and future satellite ocean color sensors.

In this study, VIIRS-SNPP-derived nL,(A) spectra over the Great Lakes are first evaluated
and validated using the in-situ optical measurements, showing excellent comparisons between
satellite-derived and in-situ-measured nL,(A) spectra data. Second, regional Chl-a and SD algorithms
for the VIIRS-SNPP ocean color data in the entire Great Lakes are developed, using in-situ Chl-a and
SD data and the VIIRS-SNPP-derived ocean color products. Third, the proposed empirical Chl-a and
SD algorithms are implemented to VIIRS-SNPP data from 2012 to 2019 for Chl-a and SD product data.
Finally, the synoptic maps and time series of the VIIRS-SNPP-derived Chl-a and SD data are generated
to investigate temporal and spatial distributions of Chl-a and SD in the Great Lakes.

2. Data and Methods

2.1. In-Situ Measurements

In-situ Chl-a and SD data, which are periodically measured in spring (April or May) and
summer (August or September) by the U.S. Environmental Protection Agency (EPA) in the Great
Lakes, were obtained from the Great Lake Environmental Database System (GLENDA). Specifically,
in-situ Chl-a and SD data, in the periods of 2012-2015 and 2012-2018, were used to develop regional
Chl-a and SD algorithms for VIIRS-SNPP ocean color applications in the Great Lakes, as well as to
evaluate VIIRS-SNPP-derived Chl-a and SD products (Figure 1). Figure 1 shows locations of in-situ
Chl-a (noted as “EPA Chl-a”) and SD (noted as “EPA Secchi”) over the Great Lakes.

In addition, in-situ radiometric data, including nL,(A) (or Rys(A)) spectra at various VIIRS spectral
bands obtained from the SeaWiFS Bio-optical Archive and Storage System (SeaBASS) database from
the NASA Ocean Biology Processing Group [21], were also used to evaluate VIIRS-SNPP-derived
ocean color products in the Great Lakes (Figure 1). Locations of the in-situ nL,(1) data in SeaBASS
over the Great Lakes are also shown in Figure 1, noted as “SeaBASS nL,”.
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Figure 1. Geography of the Great Lakes with indications of in-situ data locations for SD (purple circles)

and Chl-a (green triangles) measurements from the EPA GLENDA, and radiance measurements (red

squares) from the NASA SeaBASS. The in-situ station numbers are noted in Lake Erie.

2.2. Satellite Ocean Color Data

Ocean color Environmental Data Records (EDR or Level-2 data) of VIIRS-SNPP [22] are processed
using the Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system, with the
near-infrared (NIR) and the shortwave infrared (SWIR) combined (NIR-SWIR) atmospheric correction
algorithm [23-29]. It should be noted that VIIRS-SNPP-derived ocean color products have been well
studied, evaluated, and validated for the global ocean waters, showing generally high quality ocean
color product data [30-33]. The VIIRS-SNPP ocean color Level-2 data from 2012 to 2019 in the Great
Lakes were used to develop the regional water quality algorithms using the in-situ measurements and
VIIRS-derived water quality products. The ice masking algorithm for the Great Lakes [34] was applied
to VIIRS Level-2 data, to identify ice-contaminated pixels during the winter season, and the mapped
VIIRS ocean color data were generated with a Mercator projection at 1 X 1 km spatial resolution.
Four Level-2 data flags, i.e., high sun glint [32,35], high sensor-zenith and solar-zenith angles [32],
and straylight/cloud shadowing [36], were applied to VIIRS Level-2 data. Next, pixels (after removing
the four flagged data) were extracted from the VIIRS Level-2 data around the location of in-situ
measurements (a box with 5 x 5 pixels) and used for the matchup analysis. Detailed information
for the satellite-in-situ data matchup procedure can be found in Wang et al. [29]. It is particularly
noted that, in order to keep a good data quality of VIIRS-SNPP-derived water property data over the
Great Lakes, the four flags must be applied to mask out questionable satellite retrievals [32]. This is in
addition to other data masking, e.g., land and cloud masking [37].

2.3. Comparison of VIIRS-SNPP and In-Situ nL,,(A) Measurements

In order to evaluate the performance of VIIRS-derived ocean color products in the Great Lakes,
in-situ radiometric measurements from the NASA SeaBASS were used. A total of 73 in-situ radiometric
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measurements were available for lakes Michigan and Erie in summer months (July or August) during
the VIIRS-SNPP periods. Most of the in-situ radiometric data were acquired in the western area of
Lake Erie during cyanobacteria bloom events [38]. Since bio-optical properties of the cyanobacteria
bloom waters have significant surface radiance contributions at the NIR wavelengths, and cause some
considerable uncertainties in the VIIRS-derived nL,(A) products due to the failure of atmospheric
correction, we used only the in-situ measurements in non-cyanobacteria bloom waters in the comparison
of VIIRS-derived nL(A) spectra. After applying the flags on the VIIRS Level-2 data and performing
the matchup procedure described in Section 2.2, VIIRS-derived nL(A) spectra are compared with the
in-situ 1L (A), at six points for the VIIRS visible bands at 410, 443, 486, 551, 638, and 671 nm, and at four
points for the NIR bands at 745 and 862 nm, within +5 h time difference. Figure 2 provides example
spectra of in-situ nL, (1) measurements with the VIIRS-derived nL(A) data at four non-cyanobacteria
bloom stations. VIIRS-derived nL,(A) data are well matched with the in-situ nL,(A) data. Matchup
results between the VIIRS-derived nL;(A) and the SeaBASS in-situ nL,(A) data, at the eight VIIRS
bands (410, 443, 486, 551, 638, 671, 745, and 862 nm), are shown in Figure 3a. In addition, ratios of
VIIRS-derived nLy(A) at the wavelengths of 443, 486, 638, and 671 nm to nL(551), which are usually
inputs to retrieve water biological and biogeochemical products, are compared with those from the
SeaBASS nL,(A) data (Figure 3b). The VIIRS-derived nL,(A) data correspond reasonably well to the
in-situ-measured nL;,(A), with an overall mean ratio of 1.051. Radiance ratios in nL,(A) of nL,,(443) to
nLy(551), nlL,y(486) to nLy,(551), nly,(638) to nl,(551), and nl,,(671) to nLy,(551) from VIIRS retrievals
are also well correlated with those from the SeaBASS measurements (ratios are 1.003, 1.162, 1.005,
and 1.049, respectively).
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Figure 2. The Visible Infrared Imaging Radiometer Suite on the Suomi National Polar-orbiting
Partnership (VIIRS-SNPP)-derived nL;,(A) spectra (red circles), compared with in-situ-measured
hyperspectral at (a) Station 7, (b) Station 20, (c) Station 21, and (d) Station 28 in the Great Lakes.
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Figure 3. (a) Match-up comparison of VIIRS-SNPP-derived with those of the in-situ-measured 1Ly (A)
data at the eight wavelengths (410, 443, 486, 551, 638, 671, 745, and 862 nm). (b) Scatter plot of
VIIRS-SNPP-derived nLy,(A)/nLy(551) versus in-situ-measured nL,,(A)/nL,(551) at the VIIRS-SNPP
spectral bands of 443, 486, 638, and 671 nm.

2.4. Chl-a Algorithm for the VIIRS-SNPP in the Great Lakes

Because there are no in-situ radiometric measurements corresponding to the in-situ Chl-a data
in the Great Lakes, we compare the GLENDA in-situ Chl-a measurements to the VIIRS-derived
radiometric data, using the NIR-SWIR atmospheric correction algorithm in MSL12 [25-27]. Since there
is usually significant uncertainty in bio-optical properties of coastal waters, caused by high amounts
of suspended sediments, particularly in the western waters of Lake Erie during the spring season,
in-situ Chl-a data, measured in shallow depth (<10 m) and in the month of April, were excluded.
Specifically, valid VIIRS-derived nL,(A) spectra, corresponding to the in-situ Chl-a data within +£5h time
difference in the period of 2012 to 2015, are available for 93 data points. The empirical maximum band
ratio approach [15] has been applied to the Great Lakes. Blue (443 or 486 nm) to green (551 nm) band
nLy(A) ratio values, from VIIRS-derived nL,(A) spectra, are compared with in-situ Chl-a measurements.
As expected, VIIRS-derived nLy(A) ratio data have a strong relationship with the in-situ Chl-a data,
with high correlation (r? = 0.915). In fact, the fourth polynomial regression fit between the in-situ Chl-a
and VIIRS-derived Rys(A) ratios can be expressed as

Chl — a = 10(@0+a1 X+a X2tas X3+ay X "

with
Max(Rys(443), Rys(486))

R/5(551) ’
and coefficients ay, a1, a2, a3, and a4 of 0.3297, —2.6465, 1.9988, 0.5708, and —3.3033, respectively,
which were derived from the best fit of the fourth polynomial regression.

VIIRS-derived Chl-a data, using the new regional Chl-a algorithm (Equation (1)) are compared
with the in-situ Chl-a data for verification and evaluation. The matchup comparison results show that

X =log 2)

VIIRS-derived Chl-a data are in good agreement with the in-situ Chl-a data (Figure 4a). The mean
and median ratios of the VIIRS-derived to the in-situ Chl-a data in the Great Lakes are 1.110 and
1.012, respectively. In addition, Figure 4b provides histograms of the VIIRS-derived and the in-situ
Chl-a data, showing the two datasets have almost the same histogram distributions, although some
differences do exist. For example, there is a small peak in Chl-a between ~2 and 3 mg/m? from the
in-situ Chl-a data, while there is no such peak in the VIIRS-derived Chl-a data (Figure 4b). It should
be noted that daily VIIRS-derived Chl-a data from only May and August in 2012-2018 were used to
derive the VIIRS histogram, because most of the in-situ Chl-a data were measured in the months of
May and August. Total numbers of the VIIRS-derived and the in-situ-measured water Chl-a data that
are used for the histograms are about 2.80 x 107 and 666, respectively. Overall, the results show that the
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distribution of the VIIRS-derived Chl-a is well matched with that of the in-situ measurements. Indeed,
as shown in the histogram results, Chl-a peaks, in both VIIRS-derived and in-situ data, are located
around 0.5 mg/m? (Figure 4b). Thus, VIIRS-derived Chl-a data, with the proposed regional Chl-a
algorithm, are appropriate to the Great Lakes.
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Figure 4. (a) Matchup comparison of VIIRS-SNPP-derived Chl-a data (2012-2019) using the proposed
Chl-a algorithm (Equation (1)) with the in-situ Chl-a data, and (b) histogram results of VIIRS-derived
(red line) and in-situ-measured (blue dotted line) Chl-a data.

2.5. SD Algorithm for VIIRS-SNPP in the Great Lakes

Several studies have reported that SD has a strong correlation with nL, () at the green band [2,39,40].
Similar to the situation with Chl-a data, we do not have the in-situ nL,(A) data corresponding to
in-situ SD data in the Great Lakes. Thus, VIIRS-derived nL,,(551) data are compared with the in-situ
SD data in the Great Lakes, for development of a regional SD algorithm. VIIRS-derived nL;(551)
data are matched with the in-situ SD measurements from 2012 to 2017 at 147 data points. Figure 5a
provides results of the matchup comparison of the VIIRS-derived nL,(551) with the in-situ SD data.
The comparison results in Figure 5a show that VIIRS-derived 1nL,(551) are well correlated to the in-situ
SD data in the Great Lakes (r* = 0.875). Therefore, a new regional SD algorithm for the Great Lakes can

be expressed as
SD = 10(botb1 X+by X2 +b3 X°) @)

where X = log[nL,(551)], and fitting coefficients of by, b1, by, and b3 are 0.8694, —0.9099, —0.7645,
and —0.6390, respectively, which were derived from the best fit to Equation (3) using the in-situ-measured
SD and the corresponding VIIRS-SNPP-derived nL,(551) data.

Figure 5b provides comparison results, of VIIRS-derived SD data using Equation (3) with those from
the in-situ measurements for the Great Lakes, showing consistent SD data derived from the VIIRS-SNPP
and the in-situ measurements. Indeed, the mean and median ratios of the VIIRS-SNPP-derived to the
in-situ-measured SD data in the Great Lakes are 1.016 and 0.952, respectively. The histogram results
of the VIIRS-derived and the in-situ SD data are also shown in Figure 5c. The distribution of the
VIIRS-derived SD corresponds reasonably well to that of the in-situ SD data, even though the number
of in-situ sample data may not be large enough for a solid statistical analysis.
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Figure 5. (a) In-situ-measured SD as a function of VIIRS-SNPP-derived nL,(551) for the Great Lakes,
(b) match-up comparison of VIIRS-SNPP-derived SD using the new algorithm (Equation (3)) with
the in-situ SD data, and (c) histogram results of VIIRS-SNPP-derived (red solid line) and in-situ SD
(blue dotted line) data.

3. Results

3.1. VIIRS-SNPP-Derived Monthly Climatology Chl-a and SD Images

VIIRS-derived climatology (2012-2019) monthly Chl-a images are generated using the proposed
regional Chl-a algorithm (Equation (1)) in the Great Lakes (Figure 6). The images show that the highest
Chl-a concentrations appear in Lake Erie in all months, unlike the other lakes.

Chl-a data in lakes Michigan and Huron are generally low, while Chl-a concentrations are
relatively high in lakes Superior and Ontario. In most areas of lakes Superior, Michigan, Huron,
and Ontario, Chl-a concentrations are the lowest in winter (December to February) and increase in
spring. A slightly decreased Chl-a concentration appears in summer, and then Chl-a values increase in
autumn. The highest Chl-a generally appears in June and September for most of the lakes. However,
Chl-a patterns vary seasonally and spatially, with lakes and locations. Particularly, the seasonal
distribution of Chl-a in the nearshore waters (e.g., Green Bay, Saginaw Bay, and Thunder Bay) are
different from those in offshore waters of the lakes. Significantly high Chl-a concentrations in the
nearshore waters are seen in spring to fall months. Seasonal distribution of Chl-a in Lake Erie is
evidently different from the other lakes, showing that relatively lower Chl-a appear in June and
December, and significantly high Chl-a appears in August and September. In particular, higher Chl-a
in the western area of Lake Erie is apparently contrary to lower Chl-a in the eastern area.
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Figure 6. VIIRS-SNPP-derived climatology (2012-2019) monthly Chl-a images for January to December
(a-1) in the Great Lakes.

VIIRS-derived climatology (2012-2019) monthly SD images, using the new regional SD algorithm
(Equation (3)) in the Great Lakes, were also generated (Figure 7). The general spatial distribution of
SD is somewhat different from that of Chl-a in most of the lakes. Specifically, SD is the highest in
November and December for most areas of lakes Superior, Michigan, Huron, and Ontario, while the
lowest SD values appear in the summer months (July and August), depending on the lake. In Lake
Superior, SD data are apparently lower in the southwestern area, the northern area (Thunder Bay),
the mid-southern area (Keweenaw Bay), and the eastern area (Whitefish Bay) during most months,
compared to the main body of Lake Superior. Clearly, high SD values appear in the southern and
northern areas of Lake Michigan in December to April. Moreover, there is a patch with lower SD
data in the middle of the southern area of Lake Michigan surrounded by higher SD waters. However,
VIIRS-derived SD data are spatially more evenly distributed in most areas of Lake Michigan during
the summer months, except in the Green Bay. In Lake Huron, a higher SD is apparent in the northern
and western areas, and in the North Channel during most months. On the other hand, SD values in
Lake Erie are significantly lower than those in the other lakes. Similar to Chl-a results, there are clear
differences in the spatial distribution of SD in Lake Erie. SD values are lower in the western area and
higher in the eastern area. Unlike the other lakes, the lowest SD data appear in the winter months,
while the highest SD values are in the summer months.
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Figure 7. VIIRS-SNPP-derived monthly climatology (2012-2019) SD images of the Great Lakes for
January to December (a-1).

3.2. Seasonal and Interannual Variability from the VIIRS-SNPP-Derived Chl-a and SD

The monthly, and climatology monthly, data of VIIRS-derived Chl-a and SD were used to derive
mean Chl-a and SD values for each individual lake in the Great Lakes, in order to investigate the seasonal
and interannual variabilities. Figure 8 provides the average monthly variation of VIIRS-derived Chl-a
(Figure 8a) and SD (Figure 8b) for lakes Superior, Michigan, Huron, Erie, and Ontario. The seasonal
distributions in Chl-a are similar in lakes Superior, Michigan, and Huron, with average range of about
0.8 to 3.4 mg/m?>. Chl-a values are the lowest in the winter (December to February) and highest in the
summer (June in lakes Superior, Huron, and Ontario; July in Lake Michigan). There is another Chl-a
peak in October for Lake Superior and in September for lakes Michigan and Ontario. In Lake Erie,
Chl-a values in June are relatively low, and the highest values appear in August and September. Overall,
Chl-a concentrations in Lake Erie are also significantly higher compared with those from other lakes.
The seasonal variation of SD is similar in lakes Superior, Michigan, Huron, and Ontario. The SD is the
lowest in the summer months and highest in the winter months. In fact, differences between the lowest
and highest SD are relatively small in lakes Superior, Michigan, and Huron. However, apparently
lower SD values in Lake Ontario are seen in August and September. The seasonal variation of SD
in Lake Erie is the lowest in the winter months and the highest in the summer months, which looks
opposite to that in the other lakes. In addition, SD values in Lake Erie are significantly lower than
those in the other lakes.
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Figure 8. Comparisons of VIIRS-SNPP-derived climatology (2012-2019) monthly means of (a) Chl-a
and (b) SD, for Lake Superior (SU) (blue), Lake Michigan (MI) (light blue), Lake Huron (HU) (green),
Lake Erie (ER) (yellow), and Lake Ontario (ON) (red). Note that the filled symbols highlight the
non-winter months (March-October).

Time series of the VIIRS-derived monthly Chl-a and SD in the individual lakes of the Great
Lakes were constructed (Figure 9). Average values of all valid pixels from the monthly Chl-a and
SD in the individual lake are derived as the monthly values for each lake. Seasonal Chl-a variation
in the Great Lakes is generally similar in most years, with higher Chl-a in summer and lower Chl-a
in winter. However, strong interannual variability is present in VIIRS-derived Chl-a and SD in the
Great Lakes. The significantly high Chl-a values appeared in Lake Huron in June 2019, in Lake Ontario
in September 2015, and in Lake Erie in September 2013 and 2015. It also seemed that there was an
increasing trend in Chl-a in Lake Michigan and Lake Huron. SD also presented a somewhat similar
seasonal pattern in most years in the Great Lakes, showing that SD values in Lake Erie were higher in
summer and lower in winter, while SD values in the other lakes were lower in summer and higher in
winter. Furthermore, a strong interannual variability was exhibited in SD values for the Great Lakes.
It shows that lakes Michigan and Huron have slightly increased SD trends. SD values in Lake Erie were
relatively lower in 2015 (maximum of about 7.5 m) compared with those from other years (maximum
of about 8.5 to 9.5 m). In Lake Ontario, the lowest SD values were considerably lower in 2012, 2018,
and 2019.
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Figure 9. Time series of VIIRS-SNPP-derived monthly Chl-a (green circles) and SD (red triangles) in

(a) Lake Superior, (b) Lake Michigan, (c) Lake Huron, (d) Lake Erie, and (e) Lake Ontario.

3.3. VIIRS-SNPP-Derived Climatology Ocean Color Products Images

VIIRS-SNPP ocean color products with the NIR-SWIR atmospheric algorithm [25-28] were
produced for the Great Lakes. Figure 10 provides climatology (2012-2019) images of VIIRS-derived
nLy(A) spectra at the VIIRS-SNPP visible bands (Figure 10a—f), Chl-a (Figure 10g), and SD (Figure 10h).
The spatial distributions are similar in the VIIRS-derived nL,(A) spectra images (Figure 10a—f).
Relatively higher nL;(A) spectra are in lakes Michigan and Huron, and the highest nL;,(A) spectra are
generally in Lake Erie. Specifically, nL,(A) spectra in the western area of Lake Erie are apparently
higher, particularly in the red bands [1L,(638) and nL,(671)]. Overall, spatial distribution of the
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VIIRS-derived Chl-a image is close to that in the climatology (2012-2019) monthly images, shown in
Figure 6. In general, Chl-a concentration in lakes Michigan and Huron is low, while Chl-a is relatively
high in Lake Superior, and even higher in Lake Ontario. Lake Erie has significantly high Chl-a
compared to those from the other lakes. The VIIRS-derived climatology SD image shows that SD is
generally higher in lakes Superior, Michigan, and Huron, while SD is noticeably lower in Lake Erie
(highly turbid waters). Indeed, results shown in the VIIRS-derived climatology SD image (Figure 10h)
are consistent with those of VIIRS-derived turbidity in the Great Lakes [7]. It is particularly noted that
there are some important spatial variations in Chl-a and SD climatology images (Figure 10g,h) in most
of the Great Lakes, and particularly prominently high values in the western area of Lake Erie.

nL,(443) ©

nL(638)
0.0 1.0 2.0 nlLy @10) & nlLy 443) @W cm 2 pn ! sr7)
0.0 1.0 2.0 3.0 nlLy @86) & nLy 651) @W cm ™2 pm L srt)
0.0 0.5 1.0 nLy 638) & nLy 671) @W cm 2 pn L srl)
[ |
0.25 1.0 10.0 Chla mgm™) [ Land
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Figure 10. VIIRS-SNPP-derived climatology (2012-2019) images of (a) nL,(410), (b) 1L (443),
(c) nL(486), (d) nL,(551), (e) nL,(638), (f) nLy(671), (g) Chl-a, and (h) SD in the Great Lakes.

4. Discussions

Several studies have shown that the standard OCx Chl-a algorithms are inappropriate for the
Great Lakes, because Chl-a values are either underestimated or overestimated, depending on the
lakes [4,6,16,17,41]. Lesht et al. [4] described the performance of the OCx Chl-a algorithms and other
published regional Chl-a algorithms in the Great Lakes, and further developed an improved regional
OC3 Chl-a algorithm, i.e., the Great Lakes Fit (GLF) model, in the entire Great Lakes, for SeaWiFS and
MODIS-Aqua ocean color products. We evaluated the standard OC3 Chl-a algorithm for VIIRS (OC3V),
as well as the GLF model for MODIS-Aqua (MOD3-GLF), with VIIRS measurements in the Great Lakes
in this study. However, VIIRS-derived Chl-a data from the OC3V algorithm are underestimated in the
Great Lakes (0.884 and 0.812 for mean and median ratios, respectively), which is consistent with the
results from Lesht et al. [4]. The performance of the MOD3-GLF model is similar to that of the proposed
algorithm in this study, e.g., the mean, median, and standard deviation of the ratio for MOD3-GLF
are 1.042, 0.908, and 0.482, respectively, compared with those for the new algorithm, which are 1.110,
1.012, and 0.436, respectively. However, the MOD3-GLF model (third polynomial regression fit) can
only estimate Chl-a higher than about 0.36 mg/m? in the MBR range between 0.1 and 10.0. On the
other hand, the in-situ Chl-a measurements from GLENDA in 2012 to 2015 used in this study actually
range between ~0.06 and ~50 mg/m3. Indeed, the histogram result (Figure 4b) shows that there are
considerable portions of lower Chl-a data less than ~0.36 mg/m3 (about 5.6% of all in-situ Chl-a data).
Thus, the proposed algorithm can be used for a more accurate estimation of Chl-a in a wide data range
for the VIIRS-SNPP data, in particular, for clear water cases (low Chl-a data). However, it should be
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noted that the proposed Chl-a algorithm may not work well in shallow, turbid waters, such as the
region in western Lake Erie. In addition, the satellite Chl-a algorithm over the Great Lakes may be
further improved with more in-situ Chl-a measurements (see Figure 1 for the in-situ data distributions,
showing limited in-situ Chl-a data over the lakes), as well as using other approaches and methods.

A regional SD algorithm has also been developed for multiple satellite ocean color sensors,
to investigate the long-term variation of water transparency in the entire Great Lakes [2]. In fact,
the empirical SD algorithm was derived as a function of remote sensing reflectance in the green
wavelength (~550 nm), R,s(550), for CZCS, SeaWiFS, and MODIS-Aqua data. In this study, a similar
approach is adopted to derive a SD algorithm for VIIRS-SNPP data in the entire Great Lakes. The in-situ
SD data were used to compare with 1L, (A) at 551 nm, 11L,,(551), from the VIIRS-SNPP data, instead of the
Ry5(550) used in Binding et al. [2], as well as to evaluate the Binding et al. [2] SD algorithm. Results show
that VIIRS-SNPP-derived SD data using the Binding et al. [2] algorithm are significantly underestimated,
compared with those from the in-situ measurements (mostly SD > ~4.0 m). The mean and median
ratios of the model-derived SD to in-situ SD data are 0.673 and 0.593, respectively. The discrepancy
could be related to both in-situ SD data and the satellite ocean color data used for the algorithm.
The Binding et al. [2] algorithm was developed using about 1300 in-situ SD measurements in the
period of 1985 to 2014, corresponding to the R;s(550) products from CZCS, SeaWiFS, and MODIS-Aqua.
However, the in-situ SD measurements from GLENDA used in this study for the matchup comparison
with the VIIRS-SNPP ocean color data are at only 147 points from 2012 to 2017. In addition to the
differences in the sensor spectral response function mentioned above [20], different atmospheric
correction algorithms were used to process the satellite ocean color data. VIIRS-SNPP data were
derived using the NIR-SWIR atmospheric correction algorithm, which provides improved ocean color
products in optically complex waters [25-30]. The other possible source of difference between the
two studies might be the temporal and spatial resolutions of the satellite ocean color data used for
the comparison with the in-situ SD data. For unified algorithms for various satellite ocean color data,
from historical, current (e.g., VIIRS-SNPP), and future satellite sensors, a more careful study will be
required, with a consistent data processing method. Although there are some differences between the
two SD algorithms over the Great Lakes, the overall mean spatial distribution and seasonal variation
of VIIRS-derived SD data (2012-2019), using the new proposed algorithm (Equation (3)), are actually
consistent with those of the merged SD from CZCS, SeaWiFS, and MODIS-Aqua (1979-2014) using the
Binding et al. [2] algorithm in the Great Lakes.

It has been described that the VIIRS-derived ocean color data during the winter months (November
to February) have a significant number of missing pixels in the Great Lakes (number of valid pixels
<~4% to 10%) [7]. Thus, the monthly mean Chl-a and SD data derived from VIIRS measurements in
the winter months are not correct and representative in the Great Lakes. In addition, significantly
high water-suspended sediments in shallow waters (e.g., Green Bay and Saginaw Bay), or heavy
cyanobacterial blooms, could affect the monthly mean values.

It should be noted that VIIRS-derived water property data do not provide long-term trends in
phytoplankton biomass and water transparency in the Great Lakes, because VIIRS data are available
only for about eight years. However, we analyzed all available in-situ SD data from 1983 to 2017
in the Great Lakes, to investigate remarkable decadal changes in water clarity reported in previous
studies [2,8,42]. Mean values of SD were calculated in five different periods (i.e., 1983-1990, 1991-2000,
2001-2010, 2011-2017, and 1983-2017) in the individual lake (Table 1). Increasing trends in the SD are
apparently shown in lakes Michigan, Huron, and Ontario, which are quite similar compared with the
previous results, showing increase in SD [2], and decrease in water diffuse attenuation coefficient [8]
and water turbidity [7]. The increasing rates of SD, for about three decades (1983-1990 to 2011-2017) in
Lake Michigan, Lake Huron, and Lake Ontario, are about 57.91%, 54.02%, and 75.44% on average over
each lake, respectively. However, there are no significant decadal changes in SD in Lake Erie and Lake
Superior. In fact, there are recent reports that show a reduction in phytoplankton production in the
Great Lakes [43,44], which may also be related to the increase in SD (increase in water clarity).
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Table 1. Statistics of in-situ water SD in the Great Lakes [mean, standard deviation (STD), and number of data (N)] for the different time periods, i.e., 1983-1990,
1991-2000, 20012010, 20112017, and 1983-2017, for spring and summer months, and both (spring + summer) seasons (total N = 2299).

Lake Period Both Seasons Spring Summer
SD (Mean + STD) N SD (Mean + STD) N SD (Mean + STD) N
1983-1990 - - - - - -
. 1991-2000 13.09 +2.51 127 13.96 +2.32 68 12.08 + 2.37 59
Superior
2001-2010 13.62 +£3.18 188 15.34 +£2.96 92 11.97 £ 2.42 96
2011-2017 13.73 £ 3.05 148 15.09 + 2.49 81 12.09 + 2.86 67
1983-2017 13.51 £2.97 463 14.87 +2.69 241 12.04 + 2.54 222
1983-1990 9.48 +2.72 240 9.49 +2.50 104 9.47 +2.89 136
. 1991-2000 7.01+£2.23 171 7.57 £2.63 71 6.62 +1.82 100
Michigan
2001-2010 12.09 £3.23 122 11.87 £2.97 49 1223 + 341 73
2011-2017 14.97 +3.97 84 16.95 + 3.52 33 13.69 + 3.73 51
1983-2017 10.06 + 3.90 617 10.37 £ 4.01 257 9.84 + 3.81 360
1983-1990 10.57 +2.79 222 9.10 £ 2.16 98 11.73 +2.69 124
1991-2000 9.73 £3.85 95 7.49 + 1.60 55 12.80 + 3.93 40
Huron
2001-2010 13.95 +3.31 161 1291 + 3.38 76 14.87 £2.97 85
2011-2017 16.28 + 4.70 101 17.39 + 5.26 50 15.20 + 3.82 51
1983-2017 12.37 £ 4.24 579 11.31 + 4.69 279 13.35 + 3.50 300
1983-1990 4.35 +2.52 353 3.39 £ 1.62 145 5.02 +2.81 208
Eri 1991-2000 3.74 £ 2.66 188 3.11 £ 2.67 121 4.89 +2.24 67
rie
2001-2010 4.52 +3.60 194 3.64 +£3.97 106 5.56 +2.78 88
2011-2017 4.08 + 2.46 155 3.29 +2.54 82 4.98 +2.04 73
19832017 421 +2.82 890 3.35+2.75 454 5.10 + 2.61 436
1983-1990 574 +£3.34 73 8.94 +£2.73 31 3.39 +0.88 42
. 1991-2000 745 +222 79 9.09 +1.94 37 599 +£1.20 42
Ontario
2001-2010 10.23 +5.10 87 14.76 + 3.93 39 6.55 +2.05 48
2011-2017 10.07 + 5.34 61 14.56 + 4.60 28 6.26 +1.70 33
19832017 8.37 +4.55 300 11.83 + 4.40 135 5.55 + 1.99 165
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5. Conclusions

An empirical Chl-a algorithm with the MBR for VIIRS-SNPP ocean color applications is
refined for the Great Lakes. In addition, a regional SD algorithm is derived using a strong
relationship between VIIRS-SNPP-derived nL,,(551) and in-situ-measured SD data in the Great
Lakes. Both VIIRS-SNPP-derived Chl-a and SD data, with the proposed algorithms, agree well with
the in-situ data in the Great Lakes. Results show that the proposed algorithms for VIRIS-SNPP ocean
color data can measure Chl-a and SD within reasonable accuracy in the Great Lakes. Synoptic maps
from VIIRS-SNPP-derived Chl-a and SD images can be used to investigate temporal and spatial
distributions of phytoplankton production and water transparency in the Great Lakes. While Chl-a
values in lakes Michigan and Huron are generally low, higher Chl-a concentrations appear in Lake Erie
in all months. In general, Chl-a concentrations are lower in the winter season, and higher in the months
of June to September in the lakes. General distribution of SD is somewhat different from that of Chl-a,
showing that SD in Lake Erie is the highest in summer and lower in winter, while SD is higher in winter
and lower in summer in the other lakes. However, seasonal and spatial distributions of Chl-a and SD
vary with lakes and locations. In particular, significantly high Chl-a and low SD appear in the coastal
areas, e.g., Green Bay, Thunder Bay, Saginaw Bay, and Whitefish Bay, where water properties are likely
influenced by shallow bathymetry and freshwater discharges from the land. The time series of the
monthly Chl-a and SD data from VIIRS-SNPP show a strong interannual variability in phytoplankton
biomass and water quality in the Great Lakes. Significantly high or low values in Chl-a and SD in
the Great Lakes could be caused by regional physical forcing, and/or biological events such as high
winds, river discharges, or algal blooms. In this study, we have demonstrated that the proposed
Chl-a and SD algorithms measure reasonably accurate Chl-a and SD from the VIIRS-SNPP ocean color
data in the Great Lakes. As a next step, for the investigation of the long-term variability in water
quality and biogeochemical parameters, it will be required to derive more robust unified algorithms of
water quality and biogeochemical parameters in the Great Lakes, for the past (e.g., CZCS, SeaWiFS),
present [e.g., MODIS, VIIRS, the Ocean and Land Colour Instrument (OLCI), the Second-Generation
Global Imager (SGLI)], and future satellite ocean color observations.
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